Ⅰ 沈氏微反应器适用于哪些反应
杭州沈氏积极投入到微反应技术的研发与应用中,并取得了一些可喜的进展,目前已实现工业化规模化生产,在提升本质安全上发挥了重要作用。沈氏微化工经过不断实验筛选与摸索,以下是适用于微反应器的实验类型及实验条件:
氧化反应、格氏反应、格氏加成反应-消去反应、羟醛缩合反应、重氮化反应、巴尔茨-希曼反应、重氮化水解反应、硝化反应。
Ⅱ 微反应器的应用
微反应器独特的结构给它带来了一系列优质的性能,故它被应用到许多领域中。例如对于小规模的光化学过程,采用透明的微反应器可有利于薄流体层靠近辐射源。德国美因兹微技术研究所开发了一种平行盘片结构的电化学微反应器。使用这个装置,提高了由4一甲氧基甲苯合成对甲氧基苯甲醛反应的选择性。由于微反应器高的传热效率,使反应床层几近恒温,有利于各种化学反应的进行。Wan等在微反应器中将苯胺氧化成氧化偶氮苯,DelSman等在微系统中研究了一氧化碳的选择氧化,同时微反应器也被应用到加氢反应、氨的氧化、甲醇氧化制甲醛、水煤气变换以及光催化等一系列反应。另外,微反应器还可用于某些有毒害物质的现场生产,进行强放热反应的本征动力学研究以及组合化学如催化剂、材料、药物等的高通量筛选。
Ⅲ 微反应器的缺点
微反应器的微结构最大的缺点是固体物料无法通过微通道,如果反应中有大量固体产生,微通道极易堵塞,导致生产无法连续进行。
目前这一问题主要是通过改进反应器的设计来解决。例如拜耳-埃尔费尔德微技术公司开发的阀式混合器(反应器)可以用于快速沉淀反应,基于这一技术,拜耳公司成功开发了商业化生产工艺,用于生产高性能的微米材料和纳米材料。
Ⅳ 微反应器的发展历史
美国Dupont公司于上个世纪90年代初率先开展了微化工系统在危险化学品生产中的应用基础研究,成功开发出合成异氰酸甲酯的微型化工装置。美国PNNL(Pacific Northwest National Lbaoratory)主要开展燃料电池氢源系统微型化研究,反应器主体结构是一个错流式微通道换热器,与传统相比,相同的处理能力,反应器体积可减小l~2个数量级。微反应器在传质、传热、恒温等方面表现出的巨大优势,自面世以来迅速引起相关领域专家的浓厚兴趣和关注 。
拜耳-埃尔费尔德微技术公司(Ehrfeld Mikrotechnik BTS,简称EMB)是全球领先的微反应器技术的供应商。在化工和精细化工产品生产领域,EMB开发的Miprowa系列微反应器已经被世界各大化工公司应用于工艺开发与生产中;在药物生产领域,2010年EMB与龙沙公司(Lonza)合作向市场推出了符合GMP认证要求的Flowplate系列微反应器。
Ⅳ 微混合反应器与常规间歇反应器有什么不同
turbomole 怎么模拟离子液体
1、常规合成法:离子液体常规合成法主要包括一步法和两步法。
(1)一步法:采用叔胺与卤代烃或酯类物质发生加成反应,或利用叔胺的碱性与酸性发生中和反应而一步生成目标离子液体的方法。可合成胍类离子液体和多种醇胺羧酸盐功能化离子液体。
(2)两步法:两步法的第一步是通过叔胺与卤代烃反应制备出季铵的卤化物;第二步再将卤素离子置换为目标离子液体的阴离子。可用于制备数十种咪唑类离了液体、氮基酸类离子液体、膦类离子液体等。
一步法和两步法是比较普遍的方法,因此具有普适性,但离子液体合成通常需要在加热的条件下完成,而常规的加热搅拌需要较长的时间(几个或几十个小时),因而导致合成离子液体的效率和产率均偏低。
2、外场强化法:外场强化法主要为微波法和超声波法。
(1)微波法:是通过极性分子在快速变化的电磁场中不断改变方向而引起分子的摩擦发热,属于体相加热。微波法加热升温速度较快,可极大地提高反应速率(有些反应只需几分钟),甚至提高产率和纯度。在微波作用下采用“一锅法”可合成了一系列咪唑类离子液体。该方法反应时间短、产率高。
(2)超声波法:超声波借助于超声空化作用能够在液体内部形成局部的高温高压微环境,并且超声波的振动搅拌作用可以极大地提高反应速率,尤其是非均相化学反应。采用超声波作为能量源,可在在密闭体系非溶剂条件下合成了溴化1,3-二烷基咪唑离子液体,合成吡啶类离子液体。该法具有产物收率高、反应速率快、节约能耗的特点,同时,又能减少有机溶剂的使用.降低成本,减少污染。但超声波法工业化应用将面临大功率密度的超声波设备的工业化难题。
3、微反应器法:微反应器法一般是指在一个内部尺寸为几微米到几百微米的小型微反应器内进行的反应。微反应器不但具有所需空间小、质量和能量消耗少以及反应时间短的优点,而且能够显著提高产物的产率与选择性以及传质传热效率。微反应器法所达到的效果比传统的间歇反应器法高20倍。
【离子液体】或称离子性液体,是指全部由离子组成的液体,如高温下的KCI,KOH呈液体状态,此时它们就是离子液体。在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体、室温熔融盐(室温离子液体常伴有氢键的存在,定义为室温熔融盐有点勉强)、有机离子液体等,目前尚无统一的名称,但倾向于简称离子液体。在离子化合物中,阴阳离子之间的作用力为库仑力,其大小与阴阳离子的电荷数量及半径有关,离子半径越大,它们之间的作用力越小,这种离子化合物的熔点就越低。某些离子化合物的阴阳离子体积很大,结构松散,导致它们之间的作用力较低,以至于熔点接近室温。
Ⅵ 微反应器的用途
微反应器设备根据其主要用途或功能可以细分为微混合器,微换热器和微反应器。由于其内部的微结构使得微反应器设备具有极大的比表面积,可达搅拌釜比表面积的几百倍甚至上千倍。微反应器有着极好的传热和传质能力,可以实现物料的瞬间均匀混合和高效的传热,因此许多在常规反应器中无法实现的反应都可以微反应器中实现。
目前微反应器在化工工艺过程的研究与开发中已经得到广泛的应用,商业化生产中的应用正日益增多。其主要应用领域包括有机合成过程,微米和纳米材料的制备和日用化学品的生产。在化工生产中,最新的Miprowa技术已经可以实现每小时上万升的流量。
Ⅶ 微反应器的前景与展望
迄今为止国内外学术界对微反应器已进行了广泛的研究,对它的原理和特性有了较好的认识,且在微反应器的设计、制造、集成和放大等方面都取得了可喜的成绩。但是对它的研究还不够成熟,传统的“三传一反”理论必须进行修正、补充和创新,反应的一些原理还没有探讨清楚,还需要大量的工作。另外在它的制造、催化剂的壁载和系统的自动控制方面还存在许多技术难点,有必要进行微反应系统中表面和界面现象、传递规律、反应特性和放大集成的深人研究。21世纪由于环境恶化以及能源枯竭等一系列问题,使化学工业面临前所未有的机遇和挑战,由于微反应器表现出的诸多优点,科学界致力于探索新的反应途径使化工生产更加经济和环保。所以我们有必要相信微反应器将在化学工业中发挥出巨大的作用。
Ⅷ 微通道反应器目前国际发展到什么水平了国内发展到什么程度应用领域的普及性如何了
国际发展水平:代表企业美国康宁,2014年进入中国,目前正在国内推广应用G1-G4微通道反应器,但售价昂贵。国外微反应器在化工工艺过程的研究与开发中已经得到广泛的应用,商业化生产中的应用正日益增多。其主要应用领域包括有机合成过程,微米和纳米材料的制备和日用化学品的生产。在化工生产中,最新的Miprowa技术已经可以实现每小时上万升的流量。
国内发展水平:在国内,微反应技术处于研究与开发阶段。虽然有很多高校从事微反应技术研究,尚没有成熟的国产设备面世。微通道应用尚处于实验室阶段。
但国内一些企业已经对微通道反应器已进行了广泛的研究,对它的原理和特性有了较好的认识,且在微反应器的设计、制造、集成和放大等方面都取得了可喜的成绩。适用于某些特定行业的微通道反应器已经研发成功,并进行应用示范推广。
微通道反应器材料大体有金属、玻璃、碳化硅等材质,金属材质耐腐蚀性差,玻璃和碳化硅材质耐腐蚀且热传导性好,用户可根据自身工艺要求和生产规模,寻找生产厂家进行个性化定制。
微通道反应器国际上以康宁为代表,已经形成规模化生产
Ⅸ 求书:微反应器在有机合成及催化中的应用
有机合成是指利用化学方法将单质、简单的无机物或简单的有机物制成比较复杂的有机物的过程。例如从氢气和二氧化碳制成甲醇;从乙炔制成氯乙烯,再经聚合而得聚氯乙烯树脂;从苯酚经一系列反应制得己二酸和己二胺,二者再缩合成聚酰胺66纤维。目前大多数的有机物如树脂、橡晈、纤维、染料、药物、燃料、香料等都可通过有机合成制得。[1]
Ⅹ 微管反应器原理
微化工系统是以带有微结构元件的化工装备为核心的化工系统,它的突出特点是在微时空尺度上控制流动、传递和反应过程,为实现高效、安全的物质转化提供了基础。微化工系统相关研究起源于20世纪90年代[1],多年来的研究结果表明:微化工设备内流动状态高度可控,液滴和气泡的分散尺度一般在数微米至数百微米之间;具有丰富的多相流型,一些流型中的液滴和气泡结构与尺寸高度均一;由于微尺度下传递距离短、浓度/温度梯度高以及体系巨大的比表面积,微反应器内传热/传质系数较传统化工设备大1-3个数量级[2]。
国内开展微反应器研究已经有十余年时间,在微反应器的设计制造、微混合原理的探索、气相反应、液相反应、纳米颗粒制备等领域得到迅速发展,取得了显著成果[3]。目前从事微反应器相关研究的主要有中国科学院大连物理化学研究所、清华大学、华东理工大学和山东豪迈化工技术有限公司等科研院校和科研单位。
聚合反应对反应器的传热和混合有很高的要求,传统的釜式反应器在这方面的缺陷成为获得高性能聚合产物的瓶颈之一。近年来,微反应器已能够成功应用于多种机理的聚合反应并表现出对传统釜式反应器的显著优势。从当前的发展趋势来看,微反应器在聚合反应中的应用将成为化工和高分子领域的研究热点之一。本文综述了微反应器在不同的聚合反应体系中的应用。
1
自由基聚合
聚合温度对自由基聚合所得产物的分子量和分子量分布有很大影响。因此,对反应体系温度的控制是控制产品质量的关键因素。大部分自由基聚合是较强的放热反应,且反应速度较快。在传统的釜式反应器中,反应器传热和传质能力的不足往往导致反应体系内温度分布不均,从而影响产物的分子量分布。在放热较强的自由基聚合中,使用传热能力强的微反应器可以显著改善反应结果。
Iwasaki等[4]用T形微混合器和内径分别为250μm和500μm的微管式反应器组成微反应器系统(图一),进行了一系列丙烯酸酯单体的自由基聚合。釜式反应器中丙烯酸丁酯的聚合反应产物分子量分布指数(PDI)高达10以上,而相同的反应时间和产率下微混合器中反应产物的PDI可控制在3.5以下,证明微反应器可以有效地控制自由基聚合产物的分子量分布。
图一 丙烯酸酯自由基聚合微反应器装置图
Okubo等[5]在微反应器中进行了苯乙烯的悬浮聚合,反应物和水通过K-M型微混合器形成悬浮液,再经过管式反应器进行聚合[图2(a)]。经过降温可直接在管内得到聚合物颗粒,通过改变流量可以调节聚合物颗粒大小。
微通道中的液滴聚合是一种新兴的聚合方式,其基本原理为在管内利用不良溶剂将反应体系分隔成小液滴,每个小液滴均可看做一个微型反应器。在较小的微通道尺寸下,液滴聚合的混沌混合特性进一步强化了传质效果。Okubo等利用液滴聚合合成了聚苯乙烯和聚甲基丙烯酸甲酯,反应装置见图二(b)。通过调节停留时问和控制两相间溶剂扩散的方法可以实现对聚合产物分子量的控制;与釜式反应器相比,得到的聚苯乙烯和聚甲基丙烯酸甲酯的分子量分布较窄,经过微反应器沉淀得到的聚合物粒子分布也较均一。
图二 苯乙烯自由基聚合实验装置示意图
Wu等[6}在自制的双输入微通道(500μm*600μm)反应器中进行了甲基丙烯酸羟丙酯(HPMA)的ATRP聚合。单体和催化剂从一个通道进入,引发剂从另一入口通入,通过对流量调节可以实现对产物分子量和分子量分布的调控。Wu等[7}随后又设计了结构相似的三输入微反应器,实现了环氧乙烷与HPMA的ATRP共聚合。通过调节反应时间和引发剂相对浓度两种方法均可实现对聚合产物中HPMA含量的调节。Chastek等[8]在微反应器中进行了苯乙烯和一系列丙烯酸酯的ATRP共聚合,通过特定溶剂使产物胶束化,并用动态光散射法对胶束进行了测定,反应装置见图三。
图三 ATRP共聚、胶束化和DLS检测集成装置示意图
2
阴离子聚合
Honda等[9}在由微混合器和微管反应器(内径250μm)组成的微反应器装置中进行了氨基酸-N-羧基-环内酸酐的阴离子聚合。所得产物的分子量分布窄于釜式反应器的聚合产物,并可以通过调节流速来控制产物分子量和分子量分布。如图四所示,流速降低时,反应物停留时问增长,反应程度提高,产物的分子量变大,分子量分布变窄。
图四 不同流速下的GPC流出曲线
3
阳离子聚合
Nagaki等[10]将微反应器与“阳离子池”引发技术结合,进行了一系列乙烯基醚单体的阳离子聚合(图五)。阳离子池的高效引发结合微反应器的快速混合使反应在0.5 s内即可完成,并能很好地控制产物的分子量分布,产物的PDI从釜式反应器的2.25降至1.14。